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Specificity factors

• Different stimuli

• Protein isoforms

• Sub-cellular 
localisation

• Scaffold proteins

• Phosphatases

• Feedbacks

• Cross-talks

Yao and Seger, BioFactors, 2009



Biological motivation

Generic scope
Study the role(s) of MAPK signalling deregulations 
in cancer cell fate decision

(Im)balance between
Proliferation

Growth arrest / Apoptosis

Specific aims

• Identification of key players for the transduction of 
proliferative signals in bladder cancer 

• Understand the mechanisms governing varying MAPK 
activity in urinary bladder cancer subtypes



MAPK reaction map

• CellDesigner software (www.celldesigner.org)
• Literature-derived information
• Emphasis on specificity factors
• Generic map: several human/mouse cell types

Integration of relevant information 
into a detailed reaction map

Luca GRIECO
now at UCL, UK

http://www.celldesigner.org
http://www.celldesigner.org


The MAPK reaction map

- 248 distinct components (proteins, complexes, genes, ...)
- 176 reactions

∼200 articles

Each component and reaction is annotated regarding 
information sources and modelling choices



External stimuli and phenotypes
RTK GPCR TNFR IL1R TGFβR

Apoptosis Proliferation Growth arrest



Sub-cellular compartments
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Main MAPK pathways and cross-talks

ERK p38JNK



Example: ERK activation



Clickable map => Atlas Of Cancer Signalling Networks

https://acsn.curie.fr/

https://navicell.curie.fr/navicell/maps/mapk/master/index.html
https://navicell.curie.fr/navicell/maps/mapk/master/index.html


Clickable map => Atlas Of Cancer Signalling Networks

https://acsn.curie.fr/

https://navicell.curie.fr/navicell/maps/mapk/master/index.html
https://navicell.curie.fr/navicell/maps/mapk/master/index.html


Bladder cancer

Non-invasive

Invasive
associated with 
EGFR over-expression

associated with 
FGFR3 activating mutation



Logical modelling of MAPK network 
in bladder cancer using GINsim

Bladder cancer deregulations

Invasive (>T1) &
high proliferation rate

Ta & less aggressive

Aims
1. Recapitulate this differential behaviour with a dynamical model
2. Decipher the underlying mechanisms

• Both receptors activate MAPKs

• EGFR over-expression

• FGFR3 activating mutation



re4

re3; re5

re5

re6

CellDesigner

From molecular map to logical model (abstraction)



WILD TYPE
p53=1 iff (ATM=1 and p38=1)
                or ((ATM=1 or p38=1) and MDM2=0)
p53=0 otherwise

  

MAPK logical model: defining the logical rules



WILD TYPE
p53=1 iff (ATM=1 and p38=1)
                or ((ATM=1 or p38=1) and MDM2=0)
p53=0 otherwise

PERTURBATIONS
- p53 loss-of-function: p53=0 always          
- p53 gain-of-function: p53=1 always  

MAPK logical model: defining the logical rules



253 states

MAPK logical model

Regulatory graph encompassing 53 components, 552 circuits 



Coping with the exponential growth 
of logical state transition graphs

 Focus on attractors and their reachability

 Model reduction (based on user specifications) 

 Compaction of state transition graphs

 Temporisation (e.g. priorities, delays, etc.)

 Model checking (NuSMV, Petri nets toools, ...)

 Delineation of the roles of regulatory circuits/modules



Reduction 1 Reduction 2 Reduction 3

Inputs EGFR_stimulus, FGFR3_stimulus, TGFBR_stimulus, 
DNA_damage
EGFR_stimulus, FGFR3_stimulus, TGFBR_stimulus, 
DNA_damage
EGFR_stimulus, FGFR3_stimulus, TGFBR_stimulus, 
DNA_damage

Phenotypes Proliferation, Apoptosis, Growth_ArrestProliferation, Apoptosis, Growth_ArrestProliferation, Apoptosis, Growth_Arrest

Selected 
observables

EGFR, FGFR3, 
p53, p14, PI3K, 
AKT, PTEN, ERK

EGFR, FGFR3, 
RAF, RAS, ERK, 
AKT, p53, p21

JNK, p38, 
GADD45, ERK, 
RAS

Auto-
regulated 
components

FRS2, MSK GRB2, PI3K, p38 GRB2, PLCG, 
PI3K, MDM2

Three reductions of MAPK models
Each reduction preserves the input and phenotype components. 
Additional components were kept depending on the simulations performed. 
Apparition of auto-regulations impede further component reduction.
Conservation (compression) of regulatory circuit ensure the preservation of the main 
dynamical properties.

MAPK model reduction



MAPK reduced model (version 1)

17 components (including 4 inputs and 3 outputs), 128 circuits
Functional circuits: 1 positive, 5 negative, 1 dual



Asynchronous simulation for p53 KO
Hierarchical State Transition Graph (STG)

HTG dimension: 21 nodes

STG dimension: 637 nodes

Init. cond.: FGFR3_stim = 1

ERK+
Spry+
GRB2-
p38-
JNK-

PI3K+



Simulations of EGFR vs FGFR3 activating mutations



Simulations of documented perturbations



Coherence of simulations with published data
Biological data Model behaviour
RAF or RAS over-expressions can lead to 
constitutive activation of ERK.

In absence of inputs, constitutive activity of RAF or RAS can lead to 
permanent ERK activation, associated with proliferation.

HSP90-inhibitor disrupts RAF, AKT and EGFR, 
leading to successful cancer treatment.

Concomitant RAF, AKT, EGFR deletions abrogate the proliferative 
stable states, in the case of EGFR over-expression and in the case of 
FGFR3 activating mutation.

Patients with p53-altered/p21-negative tumors 
demonstrated a higher rate of recurrence and 
worse survival compared with those with p53-
altered/p21-positive tumors.

Following either EGFR over-expression or FGFR3 activating mutation, 
concomitant p21 and p53 loss-of-functions correspond to a phenotype 
characterised by apoptosis escape, with the possibility to attain 
proliferation. Association of p53 loss-of-function and p21 gain-of-
function leads to growth arrest attractors, without proliferation.

p38 and JNK play important roles in stress 
responses, such as cell cycle arrest and apoptosis.

In presence of either DNA_damage or TGFBR_stimulus, growth arrest/
apoptosis stable states are all lost in the p38/JNK-deleted model.

p38 and JNK have been shown to induce apoptotic 
cell death.

When p38/JNK are constitutively active, apoptotic attractors are 
obtained in the absence of other stimuli.

p38 plays its tumour suppressive role by promoting 
apoptosis and inhibiting cell cycle progression.

Under JNK constitutive activation, p38 loss-of-function determines loss 
of apoptotic attractors obtained in r26.

JNK may contribute to the apoptotic elimination of 
transformed cells by promoting apoptosis.

Under p38 constitutive activation and JNK loss-of-function, apoptotic 
attractors are lost.

Epigenetic gene silencing of GADD45 family 
members has been frequently observed in several 
types of human cancers.

In presence of DNA_damage), Growth_Arrest and Apoptosis 
components permanently oscillate when GADD45 is silenced, 
suggesting less propensity to cell death. Apoptotic stable states are still 
reached in presence of TGFBR_stimulus

ERK increases transcription of the cyclin genes and 
facilitates the formation of active Cyc/CDK 
complexes, leading to cell proliferation.

ERK gain-of-function always leads to proliferative attractors, in the 
absence of other stimuli.

ERK disrupts the anti-proliferative effects of TGFβ. TGFBR_stimulus leads to an apoptotic stable state,  but coupling of 
TGFBR_stimulus with ERK gain-of-function leads to growth arrest.

JNK might reduce RAS-dependent tumour 
formation by inhibiting proliferation and promoting 
apoptosis.

In absence of other stimuli, JNK constitutive activation completely 
abrogates RAS-dependent proliferation following RAS over-
expression. Instead, apoptotic attractors are always reached.



Using the model to analyse feedback mechanisms



Simulation of the disruption of GRB2 or Sprouty feedback 
on FRS2 under FGFR3 gain-of-function 

X

X



Apoptosis Growth_Arrest Proliferation ERK p53 EGFR FGFR3 FRS2 PI3K AKT MSK p14 PTEN
0 0 1 1 0 0 1 0 1 1 1 1 0
0 0 0 1 0 0 1 0 0 0 1 0 0

FGFR3 stimulation and multistability



Comparison with experimental data
PI3K activation tentatively influences the switch between proliferation 
and growth arrest following FGFR3 stimulus:

In FGFR3-mutated bladder cancer cell lines, PI3K activation 
(in contrast with MAPKs) is determinant for proliferation 
(Radvanyi’s group, Institut Curie).

FGFR3_stimulus
(alone)

Proliferation

Growth Arrest

ERK = 1
p38 = 0
JNK = 0
PI3K = 1

ERK = 1
p38 = 0
JNK = 0
PI3K = 0



Outlook - MAPK and bladder cancer cell decisions

‣ Qualitative recapitulation of known effects of MAPK network on 
cancer cell fate decision, following specific stimuli

‣ Insights into the role of MAPK network and of specific 
components in different bladder cancer types

‣ Novel hypotheses concerning the mechanisms underlying 
the different effects of EGFR/FGFR3 deregulations
- Feedbacks via Sprouty
- PI3K switch following FGFR3 stimulus

‣ Adaptation/extension of MAPK model for other cell types
=> Analysis of drug synergies in a gastric cell line

Grieco et al (2013) PLoS Comp Biol 9: e1003286



Prediction of drug synergies in gastric cancer cells

In collaboration with 
Liv Thommesen, Martin Kuiper 
and Astrid Lægreid at NTNU, 
Trondheim, Norway
Anaïs Baudot and Elisabeth 
Remy at IML, Marseille, France

Asmund Flobak
NTNU, Norway

Flobak A et al (2015)  
PLoS Comp Biol 11: e1004426



Knowledge-based logical model for cell fate decision 
in AGS gastric adenocarcinoma cells
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Logical network calibrated for actively growing AGS cells
Based on 72 scientific publications and 219 experiments providing information 
on model protein activities.
77 components, no input, single (proliferative) attractor = stable state



Reduced model for AGS cell growth
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Reduced logical model, keeping 7 drug targets + 1 non reducible node 
(ERK) and two outputs => extensive perturbation analysis



Chemical inhibitors and their targets.

11 
 

Figure 4: Effects of combined inhibitors on cell growth. Synergistic (yellow) and non-synergistic (blue) 
combinations are shown both as predicted by model simulations (upper panel of boxes, value of model 
parameter “growth”) and as verified by cell growth experiments (lower panel of boxes; combinatorial 
indexes (synergy indicated by CI < 1) or “n”  when non-synergy was observed).Synergy was proposed 
whenever the predicted growth for a combination of inhibitors was lower than the modeled effect of single 
drug perturbations, shown in the outer diagonal (grey, value of model parameter “growth”).  

 

Experimental validation of model predictions 
To assess the validity of our model predictions, a real-time cell assay was used to test chemical inhibitors 

of the seven proteins (Table 1) for their ability to limit AGS cell growth in single and combinatorial 

formulations. 

 

Table 1: Chemical inhibitors and their corresponding protein kinase targets.  

Chemical inhibitor Target name Target HGNC symbol GI50* 

(5Z)-7-oxozeaenol TAK1 MAP3K7 0.5 µM 

AKTi-1,2 (AKT inhibitor 

VIII) 

AKT1/2 AKT1, AKT2 10 µM 

BIRB0796 p38 MAPK MAPK14 N/A (5 µM used) ** 

CT99021 GSK3 GSK3A, GSK3B N/A (5 µM used) ** 

PD0325901 MEK MAP2K1, MAP2K2 35 nM 

PI103 PI3K PIK3CA 0.7 µM 

PKF118-310 β-catenin CTNNB1 150 nM 

* Experimentally determined concentration that inhibits AGS cell growth by 50% (GI50). 

** For the two inhibitors BIRB0796 and CT99021 no GI50 could be obtained, and 5 µM was chosen as a 

concentration that is expected affect their target in our experimental setup, based on observed effects in similar 

cell systems [27]. See Supporting Information S1 for further documentation of inhibitor properties.  

 

The effect of chemical inhibitors was analyzed using a strategy based on Loewe’s  definition  of  synergy 

[28], which states that a synergistic interaction performs better than the expected additive effect observed 

when an inhibitor is combined with itself in a ‘zero-interaction’ experiment. To quantify synergistic 

interactions, a combinatorial index (CI) was calculated [29], based on growth measured 48 hours after 



Prediction of Drug Synergies in AGS Cells
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Assessing predicted Drug Synergies in AGS cells
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Outlook - prediction of drug synergies

‣ Prediction of synergistic action of pairs of drugs on AGS cell growth

‣ All 16 predicted non synergetic drug pairs => confirmed in AGS cells

‣ 4 of the 5 predicted synergies => confirmed in AGS cells

- Known effects of combined MEK-AKT or MEK-PI3K inhibitions

- Novel synergistic effects of TAK1-AKT and TAK1-PI3K inhibitions 

‣ Combinatorial drug effects can be inferred from background 
knowledge on unperturbed and proliferating cancer cells

‣ Generalization of this approach => large pannel of cancer cell lines

‣ From in vitro to in vivo drug synergy assessment (xenografts)
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