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MAPK pathways (simplistic view)
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Biological motivation

Generic scope

Study the role(s) of MAPK signalling deregulations
in cancer cell fate decision

Proliferation

/
* Im)balance between

Growth arrest / Apoptosis

Specific aims

e |dentification of key players for the transduction of
proliferative signals in bladder cancer

* Understand the mechanisms governing varying MAPK
activity in urinary bladder cancer subtypes
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Luca GRIECO s

now at UCL, UK Integration of relevant information
into a detailed reaction map

CellDesigner software (www.celldesigner.org)

Literature-derived information

Emphasis on specificity factors

Generic map: several human/mouse cell types



http://www.celldesigner.org
http://www.celldesigner.org

The MAPK reaction map
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External stimuli and phenotypes
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Sub-cellular compartments
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Main MAPK pathways and cross-talks
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Fasra Membrare

Example: ERK activation

T

e W§—4

lYl Crad I5on R hs

BT 0T Son Rav /bRyt

s
[

JIAED

Cyoplas=

1»—{‘;—‘

lh
|au
ﬂ .”

AL =L R l Raf SR WX e

Late Lndorormes 5 I

P14/W] WX

RIN Crdd MSon Ran/p 14 ] C

LA A

;

LI RAS_ J305 *——————
o1t

Rafwvis

@+ &

£

—)
J
|
\

)

[z

§§

LA h) S0 Ran /4 NPT RN TRK

nl'

SR W

Graphical notation

@\ Association
re 1

reS Catalysis

7
(A}""0 »[€] Transcription

[C}-;0-»{8] Translation

o) | prowns

T =

phosphatase

cellular compartment




Clickable map => Atlas Of Cancer Signalling Network

arch (e.g AES or held 0\ U
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https://acsn.curie.fr/


https://navicell.curie.fr/navicell/maps/mapk/master/index.html
https://navicell.curie.fr/navicell/maps/mapk/master/index.html

Clickable map => Atlas Of Cancer Signalling Networks
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Bladder cancer
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Logical modelling of MAPK network
in bladder cancer using GINsim

Bladder cancer deregulations

 FGFR3 activating mutation == Ta & less aggressive

Invasive (>T1) &

* EGFR over-expression = high proliferation rate

 Both receptors activate MAPKs

Aims
1. Recapitulate this differential behaviour with a dynamical model
2. Decipher the underlying mechanisms



From molecular map to logical model (abstraction)
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MAPK logical model: defining the logical rules

WILD TYPE
p53=1 iff (ATM=1 and p38=1)

or ((ATM=1 or p38=1) and MDM2=0)
p53=0 otherwise




MAPK logical model: defining the logical rules

WILD TYPE
p53=1 iff (ATM=1 and p38=1)

or ((ATM=1 or p38=1) and MDM2=0)
p53=0 otherwise

PERTURBATIONS
- p53 loss-of-function: p53=0 always
- p53 gain-of-function: p53=1 always

pS3




MAPK logical model
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Coping with the exponential growth
of logical state transition graphs

Focus on attractors and their reachability
Model reduction (based on user specifications)
Compaction of state transition graphs
Temporisation (e.g. priorities, delays, etc.)
Model checking (NuSMV, Petri nets toools, ...)

Delineation of the roles of requlatory circuits/modules



MAPK model reduction

Reduction 1 Reduction 2 Reduction 3
Inputs EGFR_stimulus, FGFR3_stimulus, TGFBR _stimulus,
DNA damage

Phenotypes Proliferation, Apoptosis, Growth_Arrest

Selected EGFR, FGFRS, EGFR, FGFRS, JNK, p38,

observables po3, p14, PI3K, RAF, RAS, ERK, GADDA45, ERK,
AKT, PTEN, ERK | AKT, p53, p21 RAS

Auto- FRS2, MSK GRB2, PI3K, p38 | GRB2, PLCG,

regulated PI3K, MDM2

components

Three reductions of MAPK models

Each reduction preserves the input and phenotype components.

Additional components were kept depending on the simulations performed.
Apparition of auto-regulations impede further component reduction.

Conservation (compression) of regulatory circuit ensure the preservation of the main
dynamical properties.




MAPK reduced model (version 1)
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Asynchronous simulation for p53 KO
Hierarchical State Transition Graph (STG)

Init. cond.: FGFR3_stim =1
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Simulations of EGFR vs FGFR3 activating mutations
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Additional conditions

Simulations of documented perturbations
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Coherence of simulations with published data

Biological data

Model behaviour

RAF or RAS over-expressions can lead to
constitutive activation of ERK.

In absence of inputs, constitutive activity of RAF or RAS can lead to
permanent ERK activation, associated with proliferation.

HSP90-inhibitor disrupts RAF, AKT and EGFR,
leading to successful cancer treatment.

Concomitant RAF, AKT, EGFR deletions abrogate the proliferative
stable states, in the case of EGFR over-expression and in the case of
FGFR3 activating mutation.

Patients with p53-altered/p21-negative tumors
demonstrated a higher rate of recurrence and
worse survival compared with those with p53-
altered/p21-positive tumors.

Following either EGFR over-expression or FGFR3 activating mutation,
concomitant p21 and p53 loss-of-functions correspond to a phenotype
characterised by apoptosis escape, with the possibility to attain
proliferation. Association of p53 loss-of-function and p21 gain-of-
function leads to growth arrest attractors, without proliferation.

p38 and JNK play important roles in stress
responses, such as cell cycle arrest and apoptosis.

In presence of either DNA_damage or TGFBR _stimulus, growth arrest/
apoptosis stable states are all lost in the p38/JNK-deleted model.

p38 and JNK have been shown to induce apoptotic
cell death.

When p38/JNK are constitutively active, apoptotic attractors are
obtained in the absence of other stimuli.

p38 plays its tumour suppressive role by promoting
apoptosis and inhibiting cell cycle progression.

Under JNK constitutive activation, p38 loss-of-function determines loss
of apoptotic attractors obtained in r26.

JNK may contribute to the apoptotic elimination of
transformed cells by promoting apoptosis.

Under p38 constitutive activation and JNK loss-of-function, apoptotic
attractors are lost.

Epigenetic gene silencing of GADD45 family
members has been frequently observed in several
types of human cancers.

In presence of DNA_damage), Growth_Arrest and Apoptosis
components permanently oscillate when GADDA45 is silenced,
suggesting less propensity to cell death. Apoptotic stable states are still
reached in presence of TGFBR _stimulus

ERK increases transcription of the cyclin genes and
facilitates the formation of active Cyc/CDK
complexes, leading to cell proliferation.

ERK gain-of-function always leads to proliferative attractors, in the
absence of other stimuli.

ERK disrupts the anti-proliferative effects of TGFf.

TGFBR _stimulus leads to an apoptotic stable state, but coupling of
TGFBR_stimulus with ERK gain-of-function leads to growth arrest.

JNK might reduce RAS-dependent tumour
formation by inhibiting proliferation and promoting
apoptosis.

In absence of other stimuli, JNK constitutive activation completely
abrogates RAS-dependent proliferation following RAS over-
expression. Instead, apoptotic attractors are always reached.




Using the model to analyse feedback mechanisms
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Simulation of the disruption of GRB2 or Sprouty feedback
on FRS2 under FGFR3 gain-of-function

p53=1 ERK=0
AKT=0

4
No other Y
perturbations
IREEEEEEEE >
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FGFR3 stimulation and multistability
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Comparison with experimental data

PI3K activation tentatively influences the switch between proliferation
and growth arrest following FGFR3 stimulus:

~ ERK =1

e p38 =0
Proliferation Y INK=0

PI3K = 1
FGFR3_stimulus / -

(alone) \ " ERK=1
p38 =0
Growth Arrest =< INK = 0

L PI3K=0

In FGFR3-mutated bladder cancer cell lines, PI3K activation
(in contrast with MAPKSs) is determinant for proliferation
(Radvanyi’s group, Institut Curie).



Outlook - MAPK and bladder cancer cell decisions

4

Qualitative recapitulation of known effects of MAPK network on
cancer cell fate decision, following specific stimuli

Insights into the role of MAPK network and of specific
components in different bladder cancer types

Novel hypotheses concerning the mechanisms underlying
the different effects of EGFR/FGFR3 deregulations

- Feedbacks via Sprouty

- PI3K switch following FGFR3 stimulus

Adaptation/extension of MAPK model for other cell types
=> Analysis of drug synergies in a gastric cell line

Grieco et al (2013) PLoS Comp Biol 9: e1003286



Prediction of drug synergies in gastric cancer cells

Signaling network

ﬂ /— AGS cell line data

v v

Logical model

I

Drug targets

I

Synergy predictions

I

Experimental
validation

Asmund Flobak
NTNU, Norway

In collaboration with

Liv Thommesen, Martin Kuiper
and Astrid Laegreid at NTNU,
Trondheim, Norway

Anais Baudot and Elisabeth
Remy at IML, Marseille, France

Flobak A et al (2015)
PLoS Comp Biol 11: €1004426



Knowledge-based logical model for cell fate decision
in AGS gastric adenocarcinoma cells
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77 components, no input, single (proliferative) attractor = stable state



Reduced model for AGS cell growth
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Reduced logical model, keeping 7 drug targets + 1 non reducible node
(ERK) and two outputs => extensive perturbation analysis



Chemical inhibitors and their targets.

Chemical inhibitor Target name Target HGNC symbol GI50%*
(5Z)-7-oxozeaenol TAKI1 MAP3K7 0.5 uM

AKTi-1,2 (AKT inhibitor AKT1/2 AKT1, AKT2 10 uM

VIII)

BIRB0796 p38 MAPK MAPK14 N/A (5 uM used) **
CT99021 GSK3 GSK3A, GSK3B N/A (5 uM used) **
PD0325901 MEK MAP2K1, MAP2K?2 35 nM

P1103 PI3K PIK3CA 0.7 uM
PKF118-310 B-catenin CTNNBI 150 nM

* Experimentally determined concentration that inhibits AGS cell growth by 50% (GI50).
** For the two inhibitors BIRB0796 and CT99021 no GI50 could be obtained, and 5 uM was chosen as a

concentration that is expected affect their target in our experimental setup, based on observed effects in similar

cell systems [27]. See Supporting Information S1 for further documentation of inhibitor properties.



Prediction of Drug Synergies in AGS Cells

GSK3i

p38i

BCATi

TAK1i

PI3Ki

MEK1i

AKTi

. No synergy predicted or observed
. Synergy predicted and observed
. Synergy predicted, not observed
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Cell index (arbitrary units)

Cell index (arbitrary units)

Assessing predicted Drug Synergies in AGS cells

w

AKT and TAK1 inhibition

Times (hours)

Cell index (arbitrary units)

Cell index (arbitrary units)

w

MEK1 and AKT inhibition

PI3K and TAK1 inhibition

Times (hours)



Outlook - prediction of drug synergies

» Prediction of synergistic action of pairs of drugs on AGS cell growth
» All 16 predicted non synergetic drug pairs => confirmed in AGS cells
» 4 of the § predicted synergies => confirmed in AGS cells

- Known effects of combined MEK-AKT or MEK-PI3K inhibitions

- Novel synergistic effects of TAK1-AKT and TAK1-PI3K inhibitions

» Combinatorial drug effects can be inferred from background
knowledge on unperturbed and proliferating cancer cells

» Generalization of this approach => large pannel of cancer cell lines

» From in vitro to in vivo drug synergy assessment (xenografts)
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