

Prediction of sensitivity to genotoxic drug by modeling cancer cell lines and patient omics data in the context of comprehensive DNA repair signaling network

Inna Kuperstein

"Computational Systems Biology of Cancer" U900 Institut Curie/INSERM/Ecole des Mines ParisTech, Paris, France

Treatment approaches in cancer Genotoxic drugs

Treatment approaches in cancer Targeted drugs: synthetic lethality paradigm

Hartwell et al. Science (1997)

Synthetic genetic interactions

Mutations in number of genes producing a phenotype that is significantly different from each mutation's individual effects

Negative genetic interaction: aggravating effect **Positive genetic interaction:** ameliorating effect

Synthetic lethal gene set = intervention gene set

Synthetic lethality between two genes

Extreme case of negative genetic interactions

Gene A

Aim

Assemble, represent and analyze molecular processes depicting complexity of DNA repair mechanisms

Standards and tools

for signaling networks construction

Visual syntax

Systems Biology Graphical Notation (SBGN)

Biological molecules and interactions representation

Tool: CellDesigner

Diagram editor for signalling networks representation

The Systems Biology Graphical Notation. Le Novère N, et. al Nat Biotechnol. 2009 Aug;27(8):735-41. Biochemical modeling with Systems Biology Graphical Notation. Jansson A, Jirstrand M. Drug Discov Today. 2010 May;15(9-10):365-70.

Systems Biology Graphical Notation (SBGN) Biological molecules and post translational modifications

Systems Biology Graphical Notation (SBGN) Reaction types and regulation

Standards and tools for signaling networks construction

Systems Biology Markup Language (SBML) Computational representation of biochemical processes

Evolving a lingua franca and associated software infrastructure for computational systems biology: the Systems Biology Markup Language (SBML) project. Hucka M, Finney A, Bornstein BJ, Keating SM, Shapiro BE, Matthews J, Kovitz BL, Schilstra MJ, Funahashi A, Doyle JC, Kitano H. Syst Biol (Stevenage). 2004 Jun;1(1):41-53.

DNA repair and Cell Cycle map

4 cell cycle phases

4 checkpoints

10 DNA repair pathways NER BER MMR SSA NHEJ MMEJ HR Fanconi TLS DR

Drugs and DNA damaging agents classes (UV, IR, alkylators, cross-linkers, Ros, Dbait)

Ongoing and future

FANCONI

Extend DNA repair map with Chromatin remodeling Centrosome regulation Telomere maintenance Oxidative stress response Nucleotide pool regulation

Modular interconnected and exhaustive maps

A web tool for navigation, curation and data analysis in the context of signaling networks

NaviCell = Map (Google Maps engine) + Blog (WordPress) + ToolBox

DNA repair map: network of modules

Checkpoints and DNA repair

Network of modules derived from the comprehensive map using Cytoscape plugin BiNoM. Following structural analysis and network reduction. The thickness of edges reflects number of regulatory reactions.

Aim

Suggest intervention gene sets for ovarian cancer patients resistant to genotoxic treatment

Approach

To overcome Cisplatin resistance in ovarian cancer, we searched for synthetically interacting combinations of genes to interfere with DNA repair machinery and to restore drug sensitivity:

-Construction of comprehensive DNA repair and cell signaling map

-Deriving a state transition graph from the map and retrieving all paths from a damaged DNA to the repaired DNA state

-Using OCSANA algorithm to search the Minimal Cut Sets (MCS) to interfere with DNA repair -Prioritizing MCSs based on genomic, expression and mutation data from ovarian cancer patients

Signaling networks for intervention strategy design

Complex intervention gene sets derived from data-driven network analysis

OCSANA: an integrative pathway analysis to reveal synthetic lethal sets

Identifying points of fragility in the network Identifying synthetic lethal combinations

	Elementary Pathways	Elementary Nodes	Computation Time	Total Number of MinHitSets	MinHitSets Size 1	MinHitSets Size 2	MinHitSets Size 3	MinHitSets Size 4	MinHitSets Size 5	Comments
	2300	198	5.51	252	0	0	108	42	102	
	2214	131	7.43	74	9	5	12	7	42	
nation	15	71	7.40	38336	6	0	160	4848	33322	
	198	126	2.04	74	8	5	12	7	42	
	529	171	2.40	112	0	6	30	32	44	Antiapoptotic
Conf. infor	1476	121	1.21	74	1	5	12	7	42	Downregulate d by BRCA1 and p53. Upregulated by USF-1 (which is upregulated by BRCA2)
	246	119	0.24	86	21	0	12	7	42	Study of Combinations

Retrieve minimal cut sets (MCSs) to interfere with signal propagation

State transition graph and all regulations on DNA repair map

Regulators of each state transition on DNA repair map

State transition

graph retrieval

Retrieve minimal cut sets (MCSs) to interfere with signal propagation

State transition graph, including all paths leading to repaired DNA and genes regulating each step has been derived (regulators of first level) Enrichment of SL pairs in 'real' vs. pseudo-MCSs

The coherence of the method has been validated using experimentally-proven SL pairs from shRNA screen, verifying the enrichment of the SL pair in real vs. randomly-generated (pseudo)-MCSs (DECIPHER project) in 'real' vs. pseudo-MCSs pairs from shRNA screen.

Complex intervention gene sets derived from data-driven network analysis for patients resistant to Cisplatin

For selection of top-ranked MCS to be suggested as intervention sets, we identified altered components in MCSs for each patient using mRNA, copy number and mutation information.

Exploiting the patient's background, it is possible to target the remaining 'active' components in the set to achieve synthetic lethality.

Intervention sets ranking

Gene status Expression Copy number Mutations Number of path hits (NPH) Druggability

Top ranked intervention sets for Cisplatin-resistant ovary cancer patients (example)

Resistant							
XRCC5	-MUS81	l- <mark>PARP</mark> i	<mark>2</mark> -POLD4				
XRCC5	- <mark>PARP2</mark> -	POLD4	-SLX1A				
EXO1-	XRCC5-F	PARP2-	POLD4				
XRCC5	- <mark>PARP2</mark> -	POLD4	-RPA3				
PRKDC	-MSH2-	PARP2	POLD4				

green-inhibited gene, red-activated gene

Conclusions

- DNA repair creates an interconnected network with multiple redundant paths
- Comprehensive map of DNA repair is a resource for data integration and analysis
- Using MCS search method we suggest a complementary intervention scheme for genotoxic treatment by targeting specifically certain targets in DNA repair machinery

Acknowledgements

Computational Systems Biology of Cancer Group Institut Curie, Paris **Barillot Emmanuel Bonnet Eric Calzone Laurence Cohen David Dorel Mathurin Fourguet Simon** Grieco Luca Kondratova Maria **Kuperstein Inna** Nguyễn Hiển Anh Picat Leo **Pook Stuart Ravel Jean-Marie Russo Christophe** Viara Eric Zinovyev Andrei

Institut Curie, Paris

Marc-Henri Stern Tatyana Popova Manolis Papamichos Suylvie Robine Daniel Louvard Maia Chanrion

Institut Curie, Orsay

Mounira Amor-Guéret Janet Hall Marie Dutreix

Institut Gustave Roussy, Villejuif

Murat Saparbaev Pilippo Roselli Patricia Kannouche

<u>University of California, Davis</u> Wolf-Dietrich Heyer <u>Laboratory of Cell Signalling</u> <u>Institut Curie, Paris</u> Celine Baldeyron Thierry Dubois

Institut de Recherches Servier Cancer Research & Drug Discovery, Croissy sur Seine Gordon Tucker Francisco Cruzalegui

Institut national de la santé et de la recherche médicale

