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NetLand — A software for global dynamics analysis on

genetic system

NetLand is a standalone software too for studying GRN kinetics. It provides comprehensive
methods on simulation and visualization of network dynamics.
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Differentiation, transdifferentiation and reprogramming on the
Waddington’s epigenetic landscape show trends of cellular dynamics.

The ideas borrowed from physics makes P
the qualitative metaphor a quantitative ‘ o
model which is capable of describing the e
global dynamics of a system. s



Mathematical Formulation
Differential Equation Model

d[Genel] N _
- K*@(Genel, Gene2, Gene3 ...GeneN) — K~ [Genel] + D - 6(t)
Where:

» [Genel] denotes the concentration of Gene 1

» K*is the maximum transcriptional rate

» K is the degradation rate

» () is kinetics of Gene 1 being regulated by other nodes (e.g. Hill function)
> 0O(t) is the noise term

» D is the strength of noise

Theoretical model mainly follows:

Li C, Wang J (2013). Quantifying Cell Fate Decisions for Differentiation and
Reprogramming of a Human Stem Cell Network: Landscape and Biological Paths. PLoS
Comput Biol 9(8): €1003165.



Implement Waddington’s epigenetic landscape

The probabilistic landscape is an implementation of Waddington’s epigenetic
landscape. It is constructed with the assumption that the noise in gene expression
follows Gaussian distribution and the individual probability of each gene is independent.
The guasi-potential landscape is based on the notion that the probability of gene
expression states determines the stability.

Langevin dynamics that describes the movement of Brownian motion has been
applied to studying the stochasticity in gene transcriptional regulation.

In genetic and biochemical circuits, the change rates of species can be formulated as
Langevin equations

dX(t) = —=VUdt + VDdW,

The number of molecules of each gene in the network at time t is denoted by vector
X(t). D is the noise term associated with each reaction. U is the patrticle interaction
potential. W, denotes a Wiener process (Standard Brownian motion). The gradient
force F is equal to —VU. The drift part is composed of the noise term.



The Langevin equation can be reformulated as a Fokker—Planck (FP) equation that
governs the time evolution of the probability density function of each X(t) under the
influence of driving forces and random fluxes. FP equation is a partial differential
equation (PDE).

OP(X,0) N\ [F(xl)mxl,t) o 02[o(x)P(x;, D)
at B _Z T zz aXian

i=1 i=1 j=1

The quasi-potential U = - In(P).

Numerical solution by self-consistent mean field approximation (Li & Wang,
PLoS Comput. Biol. 2013).

Assumption: probabilities of gene concentrations are independent and follow
Gaussian distribution



Gaussian process dynamical model (GPDM) is a probabilistic approach to model
high dimensional time series data in a low dimensional latent space with a

dynamical model.
In the GPDM framework, the original data consists of N points, Y = [y, ... yy] with D

dimensions are recovered from the latent space with the corresponding two dimensional data
X = [xq ....xy]. The relationship between the latent space data and the high dimensional

data with Gaussian noise added would be

Vi = WXL' +O'l'

where W € RP*2 which has a prior as a spherical Gaussian distribution with zero mean and
0; € RP*1 sampled from a spherical Gaussian distribution with 0 mean and 8711 covariance.

Thus the likelihood for all data points is

>

D

p(YIX,8)=| |p(v.a|X.B) =| | N(v.4]0,K)
d=1 d=1

The mapping between latent space and original space is through maximization of

the above likelihood.
K is the kernel matrix, applied to guarantee the smoothness and nonlinearity of

output function.
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Example: A 4-gene network of stem cell fate
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Species Panel
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Generation of trajectories

Construction of the landscape
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Deterministic model

Runge-Kutta method to solve the ODE model
Euler—Maruyama method to get the approximate numerical solution of SDEs
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Stochastic model

Gillespie algorithm is used for simulation
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Visualization result

190.59447

14723816
103.88184
60.52554

17.169231

Visualization of global dynamics
in a landscape. The high
dimensional data is reduced to
two dimensions as x-axis and y-
axis.

It shows the landscape of the
10-gene network with
expression values of Sox1 and
Gatab as x-axis and y-axis.
Three attractors were located
at (0,0), (2.5,0) and (0,2.5)
representing stem cell state,
ectoderm and mesoderm
respectively.
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Summary

NetlLand is a software tool for simulation and
visualization of kinetics of transcriptional regulatory
networks (GRN).

Both deterministic (ODE) and stochastic (SDE)
models are supported.

Plot the Waddington’s epigenetic landscape for GRNs
of more than 3 genes.

Future work:
— Scalability of bigger networks ( > 30 genes)

— Validation with real data
— Add discrete version (Boolean network)
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