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logical and engineered systems share structural and functional featu

o Component multiplicity
o Rich connectivity
o Fail-safe functioning
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However, the single supervisory component of engineered
systems is often replaced in biological systems by multiple
control loops




Feedback Loops Carve Network’s
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Computational tasks of feedback regulatory
loops

* Fold change detection: The output of a network depends on the
relative change in input signal, rather than on the absolute levels.

« Reference: The incoherent feedforward loop can provide fold-

channe detactinn in nana raniillatinn (Gnantarn l - Shnval N

Overall, feedback loops are the guardians of the cell’s
steady state. Hence, pharmacological interventions
would eventually be restrained.

disSUrict pridscs Of SIgridiinyg. JOIrNes SVl dllfd NdZIdUSKds A. INdl UETl
Biol (2001)

- Decoding ligand specificity: Although different signals are
funneled into the same pathway, specificity is maintained by
feedback regulation.

« Reference: Growth factor-induced MAPK network topology shapes

Erk response determining PC-12 cell fate. Santos SD, Verveer PJ,
and Bastiaens PIl. Nat Cell Biol (2007)




The Era of Genome-Based Targeted Cancer Therapy
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Growth Factors Control All
Phases of Tumor Progression

1. Clonal expansion

4. Survival under

. cytotoxics



Two Major Therapeutic Strategies
Targeting EGFR/HER2 Signaling

Kinase inhibitors
JOR
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Gefitinib (lung CA)

Erlotinib (lung&pancreatic CA)
Afatinib (lung CA)

Lapatinib (breast CA)

Monoclonal antibodies
:83

Trastuzumab (breast&gastric CA)
Cetuximab (colorectal&head CA)
Panitumumab (colorectal CA)
Pertuzumab (breast CA)



The EGFR/HER2 Family and the Double
Enigma
HER2, a strongly ERBBS3 binds several

oncogenic kin of EGFR, ligands, but its
binds no known ligand kinase is inactive
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Systems biology of signal transduction:
Integration of networks
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Networks evolved to compensate for the limited
size of genomes

dGenomes expand by duplications

dTrade-offs of Mega-genomes:
Logistics of Replication
JChallenges for DNA repair

Excessive regulatory
sequences

JThe alternatives:

dSimple proteins-->multi-

domain

Splice variants and PTMs

JPathways-->networks
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The Origin of Biological Complexity:
Whole Genome and Chromosome
Duplications




The Evolution of RTKs: Roles for Sub-
Functionalization
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There have been two
genome- wide duplications
and numerous smaller scale
events

Most duplicated genes are
lost; sub-functionalization
retains duplicated genes by
enabling complementary
functions

Amit, Wides &Yarden (2007) Molecular Systems Biology 3:151-163



Sub-functionalization: Heterodimers comprising ErbB3
(kinase-dead) and HER2 (ligand-less) are Highly Mitogenic
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The EGFR/HERZ2 Signaling Network
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Evolution Transformed a Pathway Into a Layered
Signaling Network and Trained it to Resist Common

LINEAR PATHWAYS
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Mechanisms that ensure robustness of
engineered (and biological) systems

Modularity: Organization in
units that enable damage
containment

Redundancy and diversity:
input and output diversity
and multiple pathways to
achieve a specific function

System controls:

Positive control leading to
amplification and negative
feedback control

System adaptability (training)
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Citri and Yarden (2006) Nature Rev. Mol. Cell Biol. 7: 505



Control loops ensure robustness

Modularity: Organization in
units that enable damage LAVER Pt
containment pesp

Redundancy and diversity:
input and output diversity o
and multiple pathways to o
achieve a specific

Core
machineries

function

Positive and negative
feedback control loops

Plasticity (short-term) and o @@EOEEED
adaptability (long-term) - / J \ \
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Citri and Yarden (2006) Nature Rev. Mol. Cell Biol. 7: 505



HER2 Recycles EGFR

HOMODIMERS HETERODIMERS

DEGRADATION /

Mosesson, Mills & Yarden (2008) Derailed endocytosis: an emerging feature
of cancer. Nature Rev. Cancer 8;835-50




EGF-induced proliferation of
mammary cells (HMECs)

iy

cell division

cycle begins
{mitosis)

cell prepares
to divide
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R crossing requires continuous (>6 hours) presence of growth
factors



Growth-factor-dependent mitogenesis
requires two distinct phases

of signalling

Sl Bl B " T el ool B Ll R "1

NATURE CELL BIOLOGY |VOL 3 |FEBRUARY 2001

Cyclin B-CDC2
Cyclin A-CDC2

15t pulse (1-hour)

l ,s‘. Restriction point — ?
N2 3 Pulse (1-hour)
Cyclin A-CDK2 ;T{::__

Cyclin D-CDK4

Cyclin E-CDK2 Cyclin D-CDKé

R-crossing is enabled by two short pulses
of growth factors



IGF1 may replace EGF in the 1st, not the 2"

pulse
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RPPA and Transcriptomic Analyses of the Two-

Pulses
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10 expression profiles are induced by EGF

(two pulses)

-2 - _—
0 2 4 ] ] 10

C2 Transiently induced, 15t =

2“d

D Transiently induced, 15t < 2nd
502 2

57|

2 H

—
0 2 4 3 8 10

G Transiently induced, ond pulse onl
2 2,205

-

o
1] 2 4 6 8 10
J2 Interval repressed

H Transiently induced, 15! pulse only
? 2412

—— 15 puise & Interval
—4—2nd pylse

“~No 2" puise

144]

Mean normalized ‘
expression

Time (hours)



The Persistently Induced module is

enriched for metabolic genes
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Induction of metabolic processes is

essential for R-crossinc

Mormalized BrdU incorporation
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The module “Down-regulated by 2" Pulse” comprises

several p53 regulated genes
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Knockdown of p53 enables R-crossing in the

absence of a second pulse

Normalized BrdU incorporation
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The Paradigm of “Consistency Test”

dThe 2-pulse mode of
_commitment might filter

the "noise" of growth
factor bursts, which are
often short and

' Inconsistent

din the absence of p53

" (e.g., cancer cells), this
filtering mechanism is
defective



Back to Complexity:
Lessons from Graph (Network) Theory

 While networks expand, rich nodes become
richer?

* Networks are trained to resist common
perturbations; they show extreme fragility to
uncommon attacks (or double attacks)?

 Robust networks are hub-addicted, uncommon

interceptors (drugs) targeting major hubs may
collapse a network?

« Hub centrality breeds lethality*

1. A. Wagner, 2001; 2 Carlson & Doyle, 2000; 3
2. 1.B. Weinstein, 2002; 4 Barbasi & Oltavi; 2001



Centrality-Lethality Principle

\ A5 <

Pre-requisites for effective pharmacological interventions:

1. An essential hub

2. An uncommon perturbation
3. Simultaneous inhibition of the relevant feedback loops
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HER2* Breast Tumors: excessive reliance (addiction)
on heterodimers

HB-EGF NRG4

EGF

NRG3

TGFa

NRG2

AR

|. Bernard Weinstein

Trastuzumab Lapatinib

AKT
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Uncommon Perturbation #1:
Double-hit drugs (e.g., Lapatinib)

Bi-specific
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Mono-specific:
| Erlotinib

“™~ OCONH,
13

17-58G

Burris HA, 3rd et al. J Clin Oncol
2005;23:5305

Title: Phase | safety, pharmacokinetics, and clinical
activity study of lapatinib (GW572016), a
reversible dual inhibitor of epidermal growth
factor receptor tyrosine kinases, in heavily
pretreated patients with metastatic carcinomas

Abstract: .... Heavily pretreated patients with

ErbB1-expressing and/or ErbB2-overexpressing
metastatic cancers were randomly assigned to
one of five dose cohorts of lapatinib

administered once daily......Four patients
with trastuzumab-resistant metastatic
breast cancer — two of whom were
classified as having inflammatory
breast cancer — had partial responses
(PRs).



Uncommon Perturbation #2: Recruitment of the
immune system by monoclonal antibodies

Courtesy of Dr. Chris Bleackley (Univ. of Alberta)



Our Toughest Enemies

v RAS and p53: In combination, mutations in RAS and p53

are shred by >75% of human tumors, but both oncogenes are
hardly druggable.

v Micro-metasatses: These small clusters of malignant
cells evade all imaging technologies and remain most deadly.

v' Secondary (evolving) resistance to drugs: Patients
under treatment often develop resistance due to secondary
mutations and other mechanisms.

v Tumor hetero eneity: Intra-tumor and inter-metastases
genetic heterogeneity underlie resistance to drugs and robust
spreading throughout the body.



TUMOR HETEROGENEITY
Darwinian Bottlenecking Due to Treatment or Metastasis

Drug treatment

Cancer cell population

Bottleneck

Genetic heterogeneity

Charles Robert Darwin
(1809 — 1882)

Time



Intratumor Heterogeneity and Branched Evolution
Revealed by Multi-region Sequencing (M. Gerlinger et

al., 2012, NEJM)

 Used a primary RCC tumor and several
metastases

 Performed exome sequencing, analysis
of chromosome aberrations and ploidy
profiling

 Observed branched evolutionary
growth with 65% of all somatic

mutations not shared by all tumor
regions



Intra-tumour genetic heterogeneity
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Philogenetic Relationships of Tumor Regions
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Messages: Network Biology Provides a Conceptual
Framework for Signal Transduction Therapies

INetworks evolved to compensate for the limited coding
capacity of complex genomes

JdWhile undergoing transformation from pathways to
networks, biological systems gained robustness by means
of training to withstand common, single perturbations
(mono-therapies)

JGrowth factors employ a pulsatile mode of requlation,
WhtICh filters noise and ensures commitment to S-phase
entry

JFeedback loops are the guardians of the cell’s steady
state; perturbing the steady state would invoke resistance,
unless feedback loops are restrained

In conclusion: Blocking a cancer network translates to:

-Targeting a major (addicting or survival) hub
-Using multiple or uncommon perturbations
-Restraining the respective feedback loop
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