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“Trouble with mice is you always kill 'em. ”  
― John Steinbeck, Of Mice and Men

https://www.goodreads.com/author/show/585.John_Steinbeck
https://www.goodreads.com/work/quotes/40283
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expansion of the respective subsets (described later). In 
addition, these subsets of T cells differ in the expression of 
adhesion molecules and receptors for chemokines and 
other cytokines, which are involved in the migration of 
distinct subsets to different tissues (see Chapter 10).

Development of TH1, TH2, and TH17 Subsets
Differentiated TH1, TH2, and TH17 cells all develop from 
naive CD4+ T lymphocytes, mainly in response to cyto-
kines present early during immune responses, and dif-
ferentiation involves transcriptional activation and 
epigenetic modification of cytokine genes. The process of 
differentiation, which is sometimes referred to as polar-
ization of T cells, can be divided into induction, stable 
commitment, and amplification (Fig. 9-14). Cytokines act 
on antigen-stimulated T cells to induce the transcription 
of cytokine genes that are characteristic of differentiation 
toward each subset. With continued activation, epigen-
etic changes occur so that the genes encoding that sub-
set’s cytokines are more accessible for activation, and 
genes that encode cytokines not produced by that subset 
are rendered inaccessible. Because of these changes, the 
differentiating T cell becomes progressively committed to 
one specific pathway. Cytokines produced by any given 
subset promote the development of this subset and 
inhibit differentiation toward other CD4+ subpopula-
tions. Thus, positive and negative feedback loops contrib-
ute to the generation of an increasingly polarized 
population of effector cells.

There are several important general features of T cell 
subset differentiation.

! The cytokines that drive the development of CD4+ T cell 
subsets are produced by APCs (primarily dendritic cells 
and macrophages) and other immune cells (such as NK 
cells and basophils or mast cells) present at the site of 
the immune response. Dendritic cells that encounter 

FIGURE 9–13 Properties of TH1, TH2, and TH17 subsets of CD4+ helper T cells. Naive CD4+ T cells may differentiate into distinct 
subsets of effector cells in response to antigen, costimulators, and cytokines. The columns to the right list the major differences between the best-
defined subsets. 
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consists of IgE antibody production and the activation of 
eosinophils. Along the same lines, in many chronic auto-
immune diseases, tissue damage is caused by inflamma-
tion with accumulation of neutrophils, macrophages, and 
T cells, whereas in allergic disorders, the lesions contain 
abundant eosinophils along with other leukocytes. The 
realization that all these phenotypically diverse immuno-
logic reactions are dependent on CD4+ T cells raised an 
obvious question: How can the same CD4+ cells elicit 
such different responses? The answer, as we now know, 
is that CD4+ T cells consist of subsets of effector cells that 
produce distinct sets of cytokines, elicit quite different 
reactions, and are involved in host defense against differ-
ent microbes as well as in distinct types of immunologic 
diseases. The first subsets that were discovered were 
called TH1 and TH2 (so named because they were the first 
two subsets identified). It was subsequently found that 
some inflammatory diseases that were thought to be 
caused by TH1-mediated reactions were clearly not 
dependent on this type of T cell, and this realization led 
to the discovery of TH17 cells (called TH17 because their 
characteristic cytokine is IL-17). In the next section, we 
describe the properties of these subsets and how they 
develop from naive T cells. We will return to their cyto-
kine products, effector functions, and roles in cell-
mediated immunity in Chapter 10.

The defining characteristics of differentiated subsets of 
effector cells are the cytokines they produce, the transcrip-
tion factors they express, and epigenetic changes in cyto-
kine gene loci. These characteristics of TH1, TH2, and TH17 
cells are described below.

The signature cytokines produced by the major CD4+ T 
cell subsets are IFN-γ for TH1 cells; IL-4, IL-5, and IL-13 
for TH2 cells; and IL-17 and IL-22 for TH17 cells (see Fig. 
9-13). The cytokines produced by these T cell subsets 
determine their effector functions and roles in diseases. 
The cytokines also participate in the development and 
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Th17 cells:  
Clinical relevance

• Mucosal immunology :Th17 respond to bacterial and fungal 
antigens!

• Th17 cells imbalance associated with several autoimmune 
diseases (Rheumatoid Arthritis, MS, psoriasis, lupus, CD) !

• IL-17-deficient mice are more susceptible to the development 
of lung melanoma!

• HIV infection specifically depletes Th17 population
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Main questions

• How to modulate Th17 response to self?!

• What are the regulators of Th17 balance?!

• What are the proteins and pathways responsible for proper 
differentiation of Th17 cells?

How well findings in mouse are transferrable to human immunology?
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Our strategy

• Let’s combine:!

• Human and Mouse Th17 differentiation transcriptomics data!

• Human and Mouse PPI networks!

• Orthology information between Human and Mouse!

• Using an optimization framework !

• To identify conserved cross-species active modules

+ +

Human Mouse
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Today

• Material: Gene expression profiling & public datasets!

• Method: Conserved active module !

• Results: Modules identification!

• Regulation at 2h and 72h are well conserved !

• Overall dynamics is conserved!

• Conclusions & future work
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M&M recipe:

• For each species individually:!

• Process RNA-Seq => Count matrix!

• Fit a GLM => estimated coefs!

• For each time point, !

• For each gene:!

• call for DE => p.value!

• Fit a BUM => activity score !

• Get PPI network & orthology relations
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Transcriptional profiling of 
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Tuomela et al., 2014

• Control Th0 vs Th17!

• 9 time points, RNA-Seq!

• Human: 14,338 mRNAs 
quantified in the first 72h!

• Mouse: 11,751 mRNAs quantified 
in the first 72h!

• Matched time points!

• DE called with an edgeR GLM 14



Transcription dynamics
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• Biphasic in both 
species!

• Seems “stronger” in 
the mouse samples!

•earliest changes (1/2h!) 
visible 15
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signal⇠ B(a,1)

noise⇠ uniform(0,1)⌘ B(1,1)

p−values (second order statistics)
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Scores: BUM Model

• Activity (positive and negative) 
scores derived from !

• p-values distribution!

• described with a beta-uniform 
mixture model;!

• controlling the FDR!

• using an adj. LL ratio: 

s(x,FDR) = log

âx

â�1

â⌧(FDR)

â�1

=(â� 1) (log(x)� log(⌧(FDR)))

17

Estimating the occurrence of false positives and false negatives 
in microarray studies by approximating and partitioning the 
empirical distribution of p-values. Pounds 2003



Today

• Material: Gene expression profiling & public datasets!

• Method: Conserved active module !

• Results: Modules identification!

• Regulation at 2h and 72h are well conserved !

• Overall dynamics is conserved!

• Conclusions & future work
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PPI Networks

• Obtained from the STRING db!

• Only kept physical interactions!

• Mouse network: 12,121 nodes and 
176,462 edges !

• Human network : 14,280 nodes 
and 197,649 edges
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Orthology relations

• Obtained from ENSEMBL orthology!

• Represented as a bi-partite graph M !

• 85,640 human proteins!

•  49,717 mouse proteins !

• linked by 125,685 edges!

• grouped in 16,736 bicliques  
(avg size of 8.08, median of 6, SD of 5.97)
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M&M recipe (recap)

• For each species individually:!

• Process RNA-Seq => Count matrix!

• Fit a GLM => estimated coefs!

• For each time point, !

• For each gene:!

• call for DE => p.value!

• Fit a BUM => activity score !

• Get PPI network & orthology relations
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Conserved active modules 

• Formalized using a 
constraint modeling 
approach over boolean 
variables!

• Constraints are linearized 
=> MILP!

• The MILP is then solved 
using CPLEX with a branch-
and-cut algorithm
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MILP:?

• A formulation, with:!

• an objective function!

• subject to linear constraints!

• where variables can be constrained 
to discrete domains ({0,1},    )!

• much harder than on !

• for which exact solutions can be 
found efficiently in practice

max

x1,x2

S1 · x1 + S2 · x2

Subject to: x1 + x2  L

F1 · x1 + F2 · x2  F

P1 · x1 + P2 · x2  P

x1 � 0, x2 � 0

N

R

24



Boolean variables for nodes in solution
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c

d e

f

g

h

J

K

L

xA

xK

MILP:Variables
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Weighted boolean variables for nodes in solution, objective function:

A B

C

DE

F

ab

c

d e

f

g

h

J

K

L

wAxA

wKxK

MILP:Variables

max

X

v2V1[V2

wvxv
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Boolean variables for conserved nodes

A B
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DE

F

ab

c

d e

f

g

h

J

K

L

wAxA

mA ma
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MILP:Variables

mu = max

uv2M
{xuxv}
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constrained by having e.g more than               of nodes being conserved 

A B

C

DE

F

ab

c

d e

f

g

h

J

K

L

wAxA

mA ma

mB
mb

wKxK

MILP: degree of conservation

⇠
P

mvP
xv

� 50%

↵ = 50%
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• And satisfying the connectivity constraint:!
• Possibly an exponential number of constraints!
• Constraints added as needed during optimization

A B

C

DE

F

ab

c

d e

f

g

h

J

K

L

wAxA

mA ma

mB
mb

wKxK

MILP: connectivity
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Conserved cross-species network modules

G2 = (V2, E2). The nodes in these networks are labeled by their
activity—defined by w 2 RV1[V2 . Conserved node pairs are given
by the mapping M ✓ V1 ⇥ V2.

PROBLEM 1 (Conserved active modules). Given G1, G2, w and
M , the task is to find a subset of nodes V ⇤

= V

⇤
1 [V

⇤
2 with V

⇤
1 ✓ V1

and V

⇤
2 ✓ V2 such that the following properties hold.

• Activity: The sum
P

v2V ⇤ wv is maximal. Note that it is up to
the user to normalize the node weights as to prevent a bias in
activity score towards one species.

• Conservation: At least a certain fraction ↵ of the nodes in the
solution must be conserved, that is, |U⇤| � ↵ · |V ⇤| where
U

⇤
:= {u 2 V

⇤ | 9v 2 V

⇤
: uv 2 M}.

• Modularity: The induced subgraphs G1[V
⇤
1 ] and G2[V

⇤
2 ] are

connected.

There is a trade-off between conservation and activity. If no
conservation is enforced (↵ = 0), the solution will correspond to
two independent maximum-weight connected subgraphs thereby
achieving maximal overall activity. Conversely, if complete
conservation is required (↵ = 1), the solution can only consist
of conserved nodes, which may result in smaller overall activity. The
user controls this trade-off by varying the value of the parameter
↵ from 0 to 1. The activity score monotonically decreases with
increasing ↵—see Fig. 2.

Since the maximum-weight connected subgraph problem, which
occurs as a subproblem for ↵ = 0, is NP-hard (Ideker et al., 2002),
the problem of finding conserved active modules is NP-hard as well.

2.2 Integer linear programming approach
We formulate the conserved active modules problem as an integer
programming (IP) problem in the following way.

max

X

v2V1[V2

wvxv (1)

s.t. mu = max

uv2M
{xuxv} u 2 V1 (2)

mv = max

uv2M
{xuxv} v 2 V2 (3)

X

v2V1[V2

mv � ↵

X

v2V1[V2

xv (4)

G1[x] and G2[x] are connected (5)

xv,mv 2 {0, 1} v 2 V1 [ V2 (6)

In the following we show that the above formulation satisfies the
properties of activity, conservation and modularity. In addition we
give further details on the actual integer linear program (ILP).

Activity. Variables x 2 {0, 1}V1[V2 encode the presence of nodes in
the solution, i.e., for all v 2 V1 [ V2 we want xv = 1 if v 2 V

⇤ and
xv = 0 otherwise. The objective function (1) uses these variables to
express the activity of the solution, which we aim to maximize.

Conservation. Variables m 2 {0, 1}V1[V2 encode the presence of
conserved nodes in the solution. Recall that a node u 2 V

⇤
1 (u 2 V

⇤
2 )

that is present in the solution is conserved if there is another node
in the solution v 2 V

⇤
2 (v 2 V

⇤
1 ) such that the two nodes form

3

-1

3

4

3

-1

3

4

3

-1

3

4

3

-1

3

4

3

-1

3

4

3

-1

3

4

↵ = 0 ↵ = 0.5 ↵ = 1
activity: 10 activity: 9 activity: 8

G1 G2 G1 G2 G1 G2

Fig. 2: Trade-off between activity and conservation. Three
optimal solutions (indicated in yellow) for varying conservation
ratios ↵ in a toy example instance. Node activities are given next
to the nodes, conserved node pairs are linked by dotted lines. The
activity of a conserved module is the sum of the activities of its
comprising nodes. The parameter ↵ denotes the minimum fraction
of nodes in a solution that must be conserved, i.e. connected by a
dotted line.

a conserved node pair uv 2 M (vu 2 M ). This corresponds to
constraints (2) and (3). We linearize xuxv , in a standard way, by
introducing binary variables z 2 {0, 1}M such that zuv = xuxv for
all uv 2 M :

zuv  xu uv 2 M (7)

zuv  xv uv 2 M (8)

zuv � xu + xv � 1 uv 2 M (9)

zuv 2 {0, 1} uv 2 M (10)

Subsequently, we model the max function in (2) and (3) as follows.

mu � zuv uv 2 M (11)

mv � zuv uv 2 M (12)

mu 
X

uv2M

zuv u 2 V1 (13)

mv 
X

uv2M

zuv v 2 V2 (14)

We model the required degree of conservation by constraint (4).

Modularity. Constraint (5) states that the nodes encoded in the
solution x induce a connected subgraph in both G1 and G2. There
are many ways to model connectivity, e.g., using flows or cuts
(Magnanti and Wolsey, 1995). Cut-based formulations perform better
in practice (Dilkina and Gomes, 2010). Recently, Álvarez-Miranda
et al. (2013) have introduced a cut-based formulation that only uses
node variables. In an empirical study, the authors show that their
formulation outperforms other cut-based formulations. We model
connectivity along the same lines. Since the constraints that we will
describe are similar for both graphs, we introduce them only for
graph G1 = (V1, E1).

X

v2V1

yv  1 (15)

3

MILP: Formulation
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Today

• Material: Gene expression profiling & public datasets!

• Method: Conserved active module !

• Results: Modules identification!

• Regulation at 2h and 72h are well conserved !

• Overall dynamics is conserved!

• Conclusions & future work
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Today

• Material: Gene expression profiling & public datasets!

• Method: Conserved active module !

• Results: Modules identification!

• Regulation at 2h and 72h are well conserved !

• Overall dynamics is conserved!

• Conclusions & future work
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Today

• Material: Gene expression profiling & public datasets!

• Method: Conserved active module !

• Results: Modules identification!

• Regulation at 2h and 72h are well conserved !

• Overall dynamics is conserved!

• Conclusions & future work
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Conclusions

• Mouse and Human Th17 differentiation processes are well conserved 
during the first 72h !

• Differentiation happens in two phases, very early (0h--4h) and late 
(12h--72h) !

• We provide the first formulation of the conserved active module 
problem as well as an efficient MILP solver !

•   Code and recipes available there: http://software.cwi.nl/xheinz!

• PS: We got the same results on an independent data set! 
37
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Future work

• Theoretical results on the computational complexity for specific 
network topologies!

• Novel formulation for bi-conservation: Conservation between species 
and across time!

• Non-supervised formulation: Clustering of samples based on 
conserved active modules
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• Riitta Laheesma’s group for the data!
• And you for your attention... and for trying the tool:  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T cells response 205SIGNALS FOR T LYMPHOCYTE ACTIVATION

by the T cells themselves and by APCs and other cells at 
the site of antigen recognition. In this section, we will 
summarize the nature of antigens recognized by T cells 
and discuss specific costimulators and their receptors that 
contribute to T cell activation. Cytokines are discussed 
later in the chapter.

Recognition of Antigen

Antigen is always the necessary first signal for the activa-
tion of lymphocytes, ensuring that the resultant immune 
response remains specific for the antigen. Because CD4+ 
and CD8+ T lymphocytes recognize peptide-MHC com-
plexes displayed by APCs, they can respond only to 
protein antigens or chemicals attached to proteins. In 
addition to the TCR recognizing peptides displayed by 
MHC molecules, several other T cell surface proteins par-
ticipate in the process of T cell activation (see Fig. 7-9, 
Chapter 7). These include adhesion molecules, which 
stabilize the interaction of the T cells with APCs, and 
costimulators, which are described later. The nature of 
the biochemical signals delivered by antigen receptors 
and the role of these signals in the functional responses 
of the T cells are discussed in Chapter 7.

for returning the immune system to a state of equilib-
rium, or homeostasis. It occurs mainly because the 
majority of antigen-activated effector T cells die by apop-
tosis. One reason for this is that as the antigen is elimi-
nated, lymphocytes are deprived of survival stimuli that 
are normally provided by the antigen and by the costim-
ulators and cytokines produced during inflammatory 
reactions to the antigen. It is estimated that more than 
90% of the antigen-specific T cells that arise by clonal 
expansion die by apoptosis as the antigen is cleared.

With this overview, we proceed to a discussion of the 
signals required for T cell activation and the steps that 
are common to CD4+ and CD8+ T cells. We then describe 
effector and memory cells in the CD4+ and CD8+ lineages, 
with emphasis on subsets of CD4+ helper T cells and the 
cytokines they produce. We conclude with a discussion 
of the decline of immune responses.

SIGNALS FOR T LYMPHOCYTE ACTIVATION

The proliferation of T lymphocytes and their differentia-
tion into effector and memory cells require antigen rec-
ognition, costimulation, and cytokines that are produced 

FIGURE 9–2 Phases of T cell responses. Antigen recognition by T cells induces cytokine (e.g., IL-2) secretion, particularly in CD4+ T cells, 
clonal expansion as a result of cell proliferation, and differentiation of the T cells into effector cells or memory cells. In the effector phase of the 
response, the effector CD4+ T cells respond to antigen by producing cytokines that have several actions, such as the recruitment and activation of 
leukocytes and activation of B lymphocytes, and CD8+ CTLs respond by killing other cells. 
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Experimental design

RNA-sequencing
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Human exp. design: 
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Chapter 9 – Activation of T Lymphocytes216

microbes and display microbial antigens are activated 
to produce cytokines (as well as costimulators, 
described earlier) as part of innate immune responses 
to the microbes (see Chapter 4). Different microbes 
may stimulate dendritic cells to produce distinct sets 
of cytokines, perhaps because the microbes are recog-
nized by different microbial sensors in the cells. Other 
cells of innate immunity, such as NK cells and mast 
cells, also produce cytokines that influence the pattern 
of T cell subset development.

! Stimuli other than cytokines may also influence the 
pattern of helper T cell differentiation. Some studies 
indicate that different subsets of dendritic cells selec-
tively promote either TH1 or TH2 differentiation; the 
same principle may be true for TH17 cells. In addition, 
the genetic makeup of the host is an important deter-
minant of the pattern of T cell differentiation. Inbred 
mice of some strains develop TH2 responses to the 
same microbes that stimulate TH1 differentiation in 
most other strains. Strains of mice that develop TH2-
dominant responses are susceptible to infections by 
intracellular microbes (see Chapter 15).

! The distinct cytokine profiles of differentiated cell pop-
ulations are controlled by particular transcription 
factors that activate cytokine gene transcription and 
by chromatin modifications affecting cytokine gene 
loci. The transcription factors are themselves activated 
or induced by cytokines as well as by antigen receptor 
stimuli. Each subset expresses its own characteristic set 
of transcription factors. As the subsets become increas-
ingly polarized, the gene loci encoding that subset’s 
signature cytokines undergo histone modifications 
(changes in methylation and acetylation) and conse-
quent chromatin remodeling events, so that these loci 
are “accessible” and in an “open” chromatin configura-
tion, whereas the loci for other cytokines (those not 
produced by that subset) are in an inaccessible chro-
matin state. These epigenetic changes ensure that each 
subset can produce only its characteristic collection of 
cytokines. It is likely that epigenetic changes in cyto-
kine gene loci correlate with stable phenotypes, and 
before these changes are established, the subsets may 
be plastic and convertible.

! Each subset of differentiated effector cells produces 
cytokines that promote its own development and may 
suppress the development of the other subsets. This 
feature of T cell subset development provides a power-
ful amplification mechanism. For instance, IFN-γ 
secreted by TH1 cells promotes further TH1 differentia-
tion and inhibits the generation of TH2 and TH17 cells. 
Similarly, IL-4 produced by TH2 cells promotes TH2 

FIGURE 9–14 Development of TH1, TH2, and TH17 subsets. 
Cytokines produced early in the innate or adaptive immune response to 
microbes promote the differentiation of naive CD4+ T cells into TH1, TH2, 
or TH17 cells by activating transcription factors that stimulate production 
of the cytokines of each subset (the early induction step). Progressive 
activation leads to stable changes in the expressed genes (commitment), 
and cytokines promote the development of each population and sup-
press the development of the other subsets (amplification). These prin-
ciples apply to all three major subsets of CD4+ effector T cells. 
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219FUNCTIONAL RESPONSES OF T LYMPHOCYTES

(see Chapter 14), promotes the development of proin-
flammatory TH17 cells when other mediators of inflam-
mation, such as IL-6 or IL-1, are present. Some 
experimental results indicate that TGF-β does not directly 
stimulate TH17 development but is a potent suppressor 
of TH1 and TH2 differentiation and thus removes the 
inhibitory effect of these two subsets and allows the TH17 
response to develop under the influence of IL-6 or IL-1. 
According to this idea, the action of TGF-β in promoting 
TH17 responses is indirect. TH17 cells produce IL-21, 
which may further enhance their development, provid-
ing an amplification mechanism.

The development of TH17 cells is dependent on the 
transcription factors RORγ t and STAT3 (see Fig. 9-17). 
TGF-β and the inflammatory cytokines, mainly IL-6 and 
IL-1, work cooperatively to induce the production of 
RORγt, a transcription factor that is a member of the 
retinoic acid receptor family. RORγt is a T cell–restricted 
protein encoded by the RORC gene, so sometimes the 
protein may be referred to as RORc. The inflammatory 
cytokines, notably IL-6, activate the transcription factor 
STAT3, which functions with RORγt to drive the TH17 
response. Mutations in the gene encoding STAT3 are the 
cause of a rare human immune deficiency disease called 
Job’s syndrome because patients present with multiple 
bacterial and fungal abscesses of the skin, resembling the 
biblical punishments visited on Job. These patients have 
defective TH17 responses.

TH17 cells appear to be especially abundant in mucosal 
tissues, particularly of the gastrointestinal tract, suggest-
ing that the tissue environment influences the generation 
of this subset, perhaps by providing high local concentra-
tions of TGF-β and other cytokines. This observation also 
suggests that TH17 cells may be especially important in 
combating intestinal infections and in the development 
of intestinal inflammation. The development of TH17 
cells in the gastrointestinal tract is also dependent on the 
local microbial population.

The functions of differentiated effector cells of the 
CD4+ lineage are mediated by surface molecules, primar-
ily CD40 ligand, and by secreted cytokines. We will 
describe the cytokines produced by differentiated CD4+ 
effector cells and their functions in Chapter 10.

Differentiation of CD8+ T Cells into 
Cytotoxic T Lymphocytes

The activation of naive CD8+ T cells requires antigen 
recognition and second signals, but the nature of the 
second signals may be different from those for CD4+ cells. 
We have previously described the role of dendritic cells 
in presenting antigens to and costimulating naive CD8+ 
cells.

The full activation of naive CD8+ T cells and their dif-
ferentiation into functional CTLs and memory cells may 
require the participation of CD4+ helper cells. In other 
words, helper T cells can provide second signals for CD8+ 
T cells. The requirement for helper cells may vary accord-
ing to the type of antigen exposure. In the setting of a 
strong innate immune response to a microbe, if APCs are 
directly infected by the microbe, or if cross-presentation 

microbes, such as fungi, but also when cells infected with 
various bacteria and fungi undergo apoptosis and are 
ingested by dendritic cells. IL-23 may be more important 
for the proliferation and maintenance of TH17 cells than 
for their induction. TH17 differentiation is inhibited by 
IFN-γ and IL-4; therefore, strong TH1 and TH2 responses 
tend to suppress TH17 development. A surprising aspect 
of TH17 differentiation is that TGF-β, which is produced 
by many cell types and is an anti-inflammatory cytokine 

FIGURE 9–17 Development of TH17 cells. IL-1 and IL-6 pro-
duced by APCs and transforming growth factor-β (TGF-β) produced by 
various cells activate the transcription factors RORγt and STAT3, which 
stimulate the differentiation of naive CD4+ T cells to the TH17 subset. 
IL-23, which is also produced by APCs, especially in response to fungi, 
stabilizes the TH17 cells. TGF-β may promote TH17 responses indirectly 
by suppressing TH1 and TH2 cells, both of which inhibit TH17 differentia-
tion (not shown in the figure). IL-21 produced by the TH17 cells amplifies 
this response. 
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Mice vs Men

• Cells origin? !

• Role of TGFB? !

• Secreted cytokines?

Kobezda et al. (2014). Of mice and men: how animal models advance our understanding of T-cell function in RA. Nat. Reviews. Rheumatology
54



edgeR GLM

• We fit a model of the like :!

• Here: mean ~ donor + time + treat:time !

• Test for DE by contrasting <=> H0: treat:time ==0 !

• LRT, compare models 
 counts ~ donor + time    VS    counts ~ donor + time + time:treat

MATERIALS AND METHODS

Biological coefficient of variation

RNA-Seq profiles are formed from n RNA samples. Let
pgi be the fraction of all cDNA fragments in the i-th
sample that originate from gene g. Let G denote
the total number of genes, so

PG
g¼1 !gi ¼ 1 for each

sample. Let
ffiffiffi
"

p
g denote the coefficient of variation (CV)

(standard deviation divided by mean) of pgi between the
replicates i. We denote the total number of mapped reads
in library i by Ni and the number that map to the g-th gene
by ygi. Then

EðygiÞ ¼ #gi ¼ Ni!gi:

Assuming that the count ygi follows a Poisson distribution
for repeated sequencing runs of the same RNA sample, a
well known formula for the variance of a mixture distri-
bution implies:

varðygiÞ ¼ E! varðyj!Þ½ % þ var! Eðyj!Þ½ % ¼ #gi þ "g#
2
gi:

Dividing both sides by #2
gi gives

CV2ðygiÞ ¼ 1=#gi þ "g:

The first term 1/mgi is the squared CV for the Poisson
distribution and the second is the squared CV of the un-
observed expression values. The total CV2 therefore is the
technical CV2 with which pgi is measured plus the bio-
logical CV2 of the true pgi. In this article, we call fg the
dispersion and

ffiffiffiffiffi
"g

p
the biological CV although, strictly

speaking, it captures all sources of the inter-library vari-
ation between replicates, including perhaps contributions
from technical causes such as library preparation as well
as true biological variation between samples.

GLMs

GLMs are an extension of classical linear models to
non-normally distributed response data (42,43). GLMs
specify probability distributions according to their
mean–variance relationship, for example the quadratic
mean–variance relationship specified above for read
counts. Assuming that an estimate is available for fg, so
the variance can be evaluated for any value of mgi, GLM
theory can be used to fit a log-linear model

log#gi ¼ xTi $g þ logNi

for each gene (32,41). Here xi is a vector of covariates
that specifies the treatment conditions applied to RNA
sample i, and bg is a vector of regression coefficients by
which the covariate effects are mediated for gene g. The
quadratic variance function specifies the negative binomial
GLM distributional family. The use of the negative
binomial distribution is equivalent to treating the pgi as
gamma distributed.

Fitting the GLMs

The derivative of the log-likelihood with respect to the
coefficients bg is XTzg, where X is the design matrix with
columns xi and zgi=(ygi' mgi)/(1+fgmgi). The Fisher

information matrix for the coefficients can be written as
Ig=XTWgX, where Wg is the diagonal matrix of working
weights from standard GLM theory (43). The Fisher
scoring iteration to find the maximum likelihood
estimate of bg is therefore $new

g ¼ $old
g þ % with

d=(XTWgX)
'1 XTzg. This iteration usually produces an

increase in the likelihood function, but the likelihood can
also decrease representing divergence from the required
solution. On the other hand, there always exists a
stepsize modifier a with 0< a< 1 such that
$new
g ¼ $old

g þ &% produces an increase in the likelihood.
Choosing a so that this is so at each iteration is known
as a line search strategy (44,45).

Fisher’s scoring iteration can be viewed as an approxi-
mate Newton-Raphson algorithm, with the Fisher infor-
mation matrix approximating the second derivative
matrix. The line search strategy may be used with any
approximation to the second derivative matrix that is
positive definite. Our implemention uses a computationally
convenient approximation. Without loss of generality, the
linear model can be parametrized so that XTX= I. If this is
done, and if the mgi also happen to be constant over i for a
given gene g, then the information matrix simpifies consid-
erably to mg/(1+fgmg) times the identity matrix I. Taking
this as the approximation to the information matrix, the
Fisher scoring step with line search modification becomes
simply d= aXTzg, where the multiplier mg/(1+fgmg) has
been absorbed into the stepsize factor a. In this formula-
tion, a is no longer constrained to be less than one. In our
implementation, each gene has its own stepsize a that is
increased or decreased as the iteration proceeds.

Cox–Reid adjusted profile likelihood

The adjusted profile likelihood (APL) for fg is the
penalized log-likelihood

APLgð"gÞ ¼ ‘ð"g; yg; $̂gÞ '
1

2
log det Ig:

where yg is the vector of counts for gene g, $̂g is the
estimated coefficient vector, ‘() is the log-likelihood
function and Ig is the Fisher information matrix. The
Cholesky decomposition (46) provides a numerically
stable and efficient algorithm for computing the determin-
ant of the information matrix. Specifically, logdet Ig is the
sum of the logarithms of the diagonal elements of the
Cholesky factor R, where Ig=RT R and R is upper tri-
angular. The matrix R can be obtained as a by product of
the QR-decomposition used in standard linear model
fitting. In our implementation, the Cholesky calculations
are carried out in a vectorized fashion, computed for all
genes in parallel.

Simulations

Artificial data sets were generated with negative binomial
distributed counts for a fixed total number of 10 000 genes.
The expected count size varied between genes according to
a gamma distribution with shape parameter 0.5, an ad hoc
choice that happened to mimic the size distribution of the
carcinoma data. The average dispersion was set to 0.16
(BCV=0.4). In one simulation, all genes had the same
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CB D E F

MILP: connectivity constraints

• For each connected component of the 
current solution S!

• Determine its neighborhood not in S!

• Formulate the two alternatives:!

• It’s expanded towards other CCs!

• Or it’ll be the final module (new   
variables) 

xA  xD+yA + yB + yC

xB  xD+yA + yB + yC

xC  xD+yA + yB + yC

xE  xD+yE + yF

xF  xD+yE + yF

with yv  xv and
X

v2V

yv  1;

yv
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