Conserved cross-species network modules elucidate Th17 T-cell differentiation in human and mouse

ECCB 14 BioNetVisA Workshop

<u>Mohammed El-Kebir, Hayssam Soueidan, Thomas Hume</u>, Daniela Beisser, Marcus Dittrich, Tobias Müller, Guillaume Blin, Jaap Heringa, Macha Nikolski, Lodewyk F.A. Wessels, Gunnar W. Klau

"Trouble with mice is you always kill 'em." – <u>John Steinbeck</u>, <u>Of Mice and Men</u>

T Cells

Wikimedia commons Abbas, Cellular & Molecular Immunology, 7th ed

T Helper subsets

Role in diseases

Autoimmune diseases; tissue damage associated with chronic infections

Allergic diseases

Organ-specific autoimmunity

ThI7 cells: Clinical relevance

- Mucosal immunology :Th17 respond to bacterial and fungal antigens
- Th17 cells imbalance associated with several autoimmune diseases (Rheumatoid Arthritis, MS, psoriasis, lupus, CD)
- IL-17-deficient mice are more susceptible to the development of lung melanoma
- HIV infection specifically depletes Th17 population

Main questions

- How to modulate Th17 response to self?
- What are the regulators of Th17 balance?
- What are the proteins and pathways responsible for proper differentiation of Th17 cells?

How well findings in mouse are transferrable to human immunology?

- Let's combine:
 - Human and Mouse Th 17 differentiation transcriptomics data
 - Human and Mouse PPI networks
 - Orthology information between Human and Mouse
- Using an optimization framework
- To identify conserved cross-species active modules

Mouse Human

CCSAM:(I) Activity

CCSAM:(II) Modularity

CCSAM:(II) Modularity^2

CCSAM:(III) Conservation

loday

- Material: Gene expression profiling & public datasets
- Method: Conserved active module
- Results: Modules identification
 - Regulation at 2h and 72h are well conserved
 - Overall dynamics is conserved
- Conclusions & future work

loday

- Material: Gene expression profiling & public datasets
- Method: Conserved active module
- Results: Modules identification
 - Regulation at 2h and 72h are well conserved
 - Overall dynamics is conserved
- Conclusions & future work

M&M recipe:

- For each species individually:
 - Process RNA-Seq => Count matrix
 - Fit a GLM => estimated coefs
 - For each time point,
 - For each gene:
 - call for DE => p.value
 - Fit a BUM => activity score
 - Get PPI network & orthology relations

Transcriptional profiling of Human & Mouse Th17 cells

14

- Control Th0 vs Th17
- 9 time points, RNA-Seq
- Human: 14,338 mRNAs quantified in the first 72h
- Mouse: 11,751 mRNAs quantified in the first 72h
- Matched time points
- DE called with an edgeR GLM

Tuomela et al., 2014

Transcription dynamics

Biphasic in both species

 Seems "stronger" in the mouse samples

• earliest changes (1/2h!) visible

Contrasting: Genes DE at time 2

16

Scores: BUM Model

- Activity (positive and negative) scores derived from
 - p-values distribution
 - described with a beta-uniform mixture model;
 - controlling the FDR

using an adj. LL ratio: $s(x, \text{FDR}) = \log \frac{\hat{a}x^{\hat{a}-1}}{\hat{a}\tau(\text{FDR})^{\hat{a}-1}}$ $= (\hat{a} - 1) \left(\log(x) - \log(\tau(\text{FDR})) \right)$

Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values. Pounds 2003 17

loday

- Material: Gene expression profiling & public datasets
- Method: Conserved active module
- Results: Modules identification
 - Regulation at 2h and 72h are well conserved
 - Overall dynamics is conserved
- Conclusions & future work

PPI Networks

- Obtained from the STRING db
- Only kept physical interactions
- Mouse network: 12,121 nodes and 176,462 edges
- Human network : 14,280 nodes and 197,649 edges

STRING - Known and Predicted Protein-Protein Interactions

What it does ...

STRING is a database of known and predicted protein interactions. The interactions include direct (physical) and indirect (functional) associations; they are derived from four sources:

Genomic Context

High-throughput Experiments

(Conserved) Coexpression

1 17

STRING quantitatively integrates interaction data from these sources for a large number of organisms, and transfers information between these organisms where applicable. The database currently covers 5'214'234 proteins from 1133 organisms.

Previous Knowledge

Orthology relations

- Obtained from ENSEMBL orthology
- Represented as a bi-partite graph M
- 85,640 human proteins
- 49,717 mouse proteins
- linked by 125,685 edges
- grouped in 16,736 bicliques (avg size of 8.08, median of 6, SD of 5.97)

M&M recipe (recap)

- For each species individually:
 - Process RNA-Seq => Count matrix
 - Fit a GLM => estimated coefs
 - For each time point,
 - For each gene:
 - call for DE => p.value
 - Fit a BUM => activity score
 - Get PPI network & orthology relations

loday

- Material: Gene expression profiling & public datasets
- Method: Conserved active module
- Results: Modules identification
 - Regulation at 2h and 72h are well conserved
 - Overall dynamics is conserved
- Conclusions & future work

Conserved active modules

- Formalized using a constraint modeling approach over boolean variables
- Constraints are linearized
 => MILP
- The MILP is then solved using CPLEX with a branchand-cut algorithm

P:?

- A formulation, with:
 - an objective function
 - subject to linear constraints
 - where variables can be constrained to discrete domains ($\{0, I\}, \mathbb{N}$)
 - much harder than on \mathbb{R}
 - for which exact solutions can be found efficiently in practice

 $\max \overline{S_1 \cdot x_1} + S_2 \cdot x_2$ x_1, x_2 Subject to: $x_1 + x_2 \le L$ $F_1 \cdot x_1 + F_2 \cdot x_2 < F$ $P_1 \cdot x_1 + P_2 \cdot x_2 < P$

 $x_1 > 0, x_2 > 0$

MILP:Variables

Boolean variables for nodes in solution

MILP:Variables

Weighted boolean variables for nodes in solution, objective function:

 $w_v x_v$

MILP:Variables

Boolean variables for conserved nodes $m_u = \max_{uv \in M} \{x_u x_v\}$

MILP: degree of conservation

constrained by having e.g more than lpha=50% of nodes being conserved $\sim \frac{\sum m_v}{\sum x_v} \ge 50\%$

MILP: connectivity

• And satisfying the connectivity constraint: • Possibly an exponential number of constraints • Constraints added as needed during optimization

MILP: Formulation

loday

- Material: Gene expression profiling & public datasets
- Method: Conserved active module
- Results: Modules identification
 - Regulation at 2h and 72h are well conserved
 - Overall dynamics is conserved
- Conclusions & future work

2h conserved module

72h conserved module

loday

- Material: Gene expression profiling & public datasets
- Method: Conserved active module
- Results: Modules identification
 - Regulation at 2h and 72h are well conserved
 - Overall dynamics is conserved
- Conclusions & future work

Overall dynamics and solutions

Distribution of node classes by alpha

Module score by alpha

Species - Human - Mouse To optimality • FALSE A TRUE

loday

- Material: Gene expression profiling & public datasets
- Method: Conserved active module
- Results: Modules identification
 - Regulation at 2h and 72h are well conserved
 - Overall dynamics is conserved
- Conclusions & future work

Conclusions

- Mouse and Human Th17 differentiation processes are well conserved during the first 72h
- Differentiation happens in two phases, very early (0h--4h) and late (12h - 72h)
- We provide the first formulation of the conserved active module problem as well as an efficient MILP solver
- Code and recipes available there: <u>http://software.cwi.nl/xheinz</u>
- PS:We got the same results on an independent data set!

Future work

- Theoretical results on the computational complexity for specific network topologies
- Novel formulation for bi-conservation: Conservation between species and across time
- Non-supervised formulation: Clustering of samples based on conserved active modules

Thanks! and see you @ poster 7!

- Wessels group / NKI
- CWI for the expertise
- CBIB/CGFB for the environment (and computing power!)
- VU Centre for Integrative Bioinformatics
- ERASysBio for the funding
- Riitta Laheesma's group for the data
- And you for your attention... and for trying the tool: <u>http://software.cwi.nl/xheinz</u>

72h: What are the DE IL?

Influence of conservation on content

48h

$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$

MILP: Conservation tradeoff

Controls tradeoff between overall activity and conservation

Genes affected at any time point

is.th17 FALSE TRUE

T cells response

RNA-Seq

gene	Thp_rep1	Th0_0.5h_rep1	Th0_1h_rep1	Th0_2h_rep1		
TAS2R42	0	0	0	0 0		
RP11-140L24.3	6	7	1	. 6		from Gene 19
MIR125B1	0	0	0	0	counting	
TRIM27	0	0	0	0		from Gene 23
FBLN1	0	0	1	. 0		
AC007919.19	0	0	0	0	•	
EPS15L1	521	593	545	712		from Gene 56
CTD-2334D19.1	0	0	0	0		
CTA-714B7.5+CTA-714B7.6	12	11	12	10		
ZBTB45	154	221	165	254		
BAZ1A	2393	2987	3221	4764		
FAM83C	0	0	0	0		mappeu reaus

Human exp. design:

Strongest effects: 0.5h

47

Th0_0.5h_rep1

					Th0_0.5h_rep1
					Th0_0.5h_rep2
					Th0_0.5h_rep3
					Th17_0.5h_rep1
					Th17_0.5h_rep2
					Th17_0.5h_rep3
Th0_0.5h_rep2	Th0_0.5h_rep3	Th17_0.5h_rep1	Th17_0.5h_rep2	Th17_0.5h_rep3	-

Strongest effects: 12h

Th0_12h_rep1

Strongest effects: 48h

49

Between all samples

Th17_24h_rep2 Th0 241 rep2

0.5

Between all samples

Th cells development & differentiation

Cytokines

Th17 cells development & differentiation

Abbas, Cellular & Molecular Immunology, 7th ed

Effector functions:

Mice vs Men

- Role of TGFB?
- Secreted cytokines?

Kobezda et al. (2014). Of mice and men: how animal models advance our understanding of T-cell function in RA. Nat. Reviews. Rheumatology 54

edgeR GLM

$$\log \mu_{gi} = \mathbf{x}_i^T \beta_g + 1$$

- We fit a model of the like :
- Here: mean ~ donor + time + treat:time
- Test for DE by contrasting <=> H0: treat:time ==0
 - LRT, compare models

<u>counts ~ donor + time VS</u> counts ~ donor + time + time:treat

2h dynamics of conserved module

72h dynamics of conserved module

MILP: connectivity constraints

- For each connected component of the current solution S
- Determine its neighborhood not in S
- Formulate the two alternatives:
 - It's expanded towards other CCs
 - Or it'll be the final module (new y_v variables)

 $x_E \leq x_D + y_E + y_F$ $x_F \leq x_D + y_E + y_F$ with $y_v \leq x_v$ and $y_v \leq 1$;

 $x_B \leq x_D + y_A + y_B + y_C$ $x_C \leq x_D + y_A + y_B + y_C$

 $v \in V$