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Dynamic Signaling Networks integratively 
links genome & environment to phenotype

(1) Cell Behavior is Governed by Multivariate 
Network States 

(2) Architecture and information flow of 
signaling networks drives phenotype 

(3) Dynamics in signaling networks steer 
exploration of phenotypic landscapes/
spaces 

(4) Complex diseases mediated by distorted 
dynamics/topologies in protein signaling 
networks (future drugs will target 
networks, “network medicine”).
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NON-LINEAR DIMENSIONALITY REDUCTION
(ANNs, MRF, LINEAR EMBEDDING...)
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Biological Forecasting 
- Towards Global Prediction of Cell Behavior

Deep Learning



Phosphorylation based cellular signal 
processing 

The kinome (~540 kinases): A closed directional and dynamic regulatory system 

How does specificity emerge in these systems? 
!
!

How do they evolve? 
!

How do they become dysregulated?

Motifs + Context

Lim and Pawson, Cell, 2010.
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NetworKIN & NetPhorest Algorithms

Linding et al. Cell, 129, 2007.

http://NetworKIN.info http://NetPhorest.info

Miller et al. Science Signaling 2008 
Sep 2;1(35):ra2.



Pawson & 
Linding Labs 
Science 2009.
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Flow 1

Flow 2
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Multi-cellularity & 
Noise in Tyrosine Signaling
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Tyrosine kinase evolution

Tan et al., Science. May 20, 2011.



Tyrosine 
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Cancer Genome Evolution & Kinases 
- How do mutations lead to cancer?
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Tumor State Specific Network Medicine

Creixell et al. Nature Biotechnology (2012).
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In this article, we dissect the strategies cancer cells use to become 
‘sel!sh’ and drive disease. We !rst review how genetic lesions can lead to 
altered protein function, which can result in changes to the structure and 
dynamics of signaling networks and ultimately cellular phenotype. Next, 
we describe !ve general properties of cancer signaling networks and 
name !ve challenges in cancer network biology and propose strategies 
to overcome them. By meeting these challenges, network biology may 
fundamentally advance not only basic biology but also patient treatment. 
Finally, we describe how a combination of relatively new technologies 
could become a potent cocktail for the discovery of network drugs, and 
we discuss the practical implementation of personalized and tumor-
speci!c cancer therapy.

From genomic lesions to protein-function and network 
perturbations 
Tumor cells o"en harbor hundreds to thousands of genetic lesions. But 
based on the observation that some of these genetic lesions are repeat-
edly observed in several cancers (e.g., BRAF V600E, present in >50% 
of all malignant melanomas5), it has been hypothesized that only a few 
genetic lesions are causally implicated in cancer development (‘drivers’), 
whereas the majority have no functional consequences (‘passengers’)6.

Although this classi!cation has had some use in identifying mutations 
that are highly prevalent, it is now apparent that a tumor is not, under 
any circumstances, a static and uniform population of malignant cells. 
Rather, it is a dynamic ensemble of subpopulations with di#erent 
abnormalities undergoing molecular evolution7–9. Two fundamental 
principles of cancer signaling networks can explain this observation. 
First, di#erent tumors can develop similar phenotypes by acquiring 
mutations in di#erent proteins10, in what we term analogous mutations 
(Fig. 1a). Second, it has been shown that two di#erent mutations not 
capable of causally driving cancer by themselves are able to do so when 
they appear in combination within the same cells or even within two 
neighboring cells11, in what could be described as two passengers 
becoming drivers or, as we refer to them, synthetic oncogenes (Fig. 
1b) . $us, patient-to-patient 
heterogeneity can be driven by the presence of di#erent mutations in 
the same or in di#erent proteins that lead to a similar signaling state and 
phenotypic outcome.

Altogether, the intrinsic heterogeneity of tumors makes it di%cult 
for cancer network biologists to develop tools to identify the extent to 
which combinations of cancer mutations a#ect protein function and 
cellular and phenotypic states (Fig. 2a,b). Even though several such tools 

Navigating cancer network attractors 
for tumor-speci!c therapy

Pau Creixell1, Erwin M Schoof1, Janine T Erler2 & Rune Linding1

Cells employ highly dynamic signaling networks to drive 
biological decision processes. Perturbations to these signaling 
networks may attract cells to new malignant phenotypic 
states that result in cancer development. As di"erent cancer 
cells reach these malignant states by accumulating di"erent 
molecular alterations, uncovering these mechanisms represents 
a grand challenge in cancer biology. Addressing this challenge 
will require new systems-based strategies that capture the 
intrinsic properties of cancer signaling networks and provide 
deeper understanding of the processes by which genetic 
lesions perturb these networks and lead to disease phenotypes. 
Network biology will help circumvent fundamental obstacles 
in cancer treatment, such as drug resistance and metastasis, 
empowering personalized and tumor-speci!c cancer therapies.

Cells are constantly computing decisions based on the integration of 
di#erent cues that reach them at various times. In contrast to single-
cell organisms, cells must make decisions that, ultimately, bene!t the 
organism as a whole, even if that implies that an individual cell will 
have to decide to commit suicide. In line with this unique feature, sig-
naling networks have evolved during multicellular evolution to allow 
single cells to integrate cues and make decisions that ensure cooperative 
behavior between di#erent cells. By hijacking these mechanisms, cancer 
cells escape cooperative rules and transition from a game governed by 
Nash equilibria between all cells into a new scenario where cancer cells 
decide their behavior purely based on their own bene!t1,2 or as phrased 
by Hanahan and Weinberg3, “become masters of their own destinies.” 
Given the central role played by signaling networks in the integration 
of cues to compute any cellular responses, we argue 

that cancer is not simply 
a disease with a genetic basis, but is one ultimately driven by pertur-
bations at the signaling network level, and that both the ‘cue-signal-
response’ rules of cellular decision-making and the switch in strategy 
from cooperative to sel!sh 

 are major, hitherto understudied, hall-
marks of cancer3,4.
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I. Tyrosine loss occur in metazoan evolution likely to reduce noise/
enhance fidelity of signaling systems 

II. Using comprehensive modeling of kinase mutations 
(ReKINect), we have been able to better interpret cancer genomes. 

III.(With KINspect) We have found that substrate specificity is driven 
by a sparse network of determinants of specificity spanning 
different parts of the kinase domain. 

IV. We have modeled the effect of mutations and identified twice as 
many functional mutations as drivers were known before. 

V. We have deployed these methods and identified a potential 
network drivers of resistance and metastasis.  

VI.Network drug targets more efficacious than single target 
strategies. Sunitinib, foretinib and motesanib seem promising 
candidates for CRC treatment.
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